Commit b0da5b1c authored by Martin Atkins's avatar Martin Atkins
Browse files

core: Remove the last few HIL remnants

We've not been using HIL in the main codepaths since Terraform 0.12, but
some references to it (and some supporting functionality in Terraform)
stuck around due to interactions with types we'd kept around to support
legacy shims.

However, removing the configs.RawConfig field from
terraform.ResourceConfig disconnects that subtree of dependencies from
everything else, allowing us to remove it. This is safe because the only
remaining uses of terraform.ResourceConfig are shims from values that
were already evaluated using the HCL 2 API, and thus they never need
the "just in time" HIL evaluation that ResourceConfig.interpolateForce
used to do.

We also had some HIL references in configs/hcl2shim that were previously
in support of the "terraform 0.12upgrade" command, but the implementation
of that command is now removed.

There was one remaining reference to HIL in a now-unused function in the
helper/schema package, which I removed entirely here.

This then allows us to remove the HIL dependency entirely, and also to
clean up some remaining old remants of the legacy "config" package that
we'd recently moved into the "configs" package pending further pruning.
parent 56c0e352
Showing with 0 additions and 3482 deletions
+0 -3482
......@@ -4,7 +4,6 @@ import (
"fmt"
"math/big"
"github.com/hashicorp/hil/ast"
"github.com/zclconf/go-cty/cty"
"github.com/hashicorp/terraform/configs/configschema"
......@@ -229,125 +228,3 @@ func HCL2ValueFromConfigValue(v interface{}) cty.Value {
panic(fmt.Errorf("can't convert %#v to cty.Value", v))
}
}
func HILVariableFromHCL2Value(v cty.Value) ast.Variable {
if v.IsNull() {
// Caller should guarantee/check this before calling
panic("Null values cannot be represented in HIL")
}
if !v.IsKnown() {
return ast.Variable{
Type: ast.TypeUnknown,
Value: UnknownVariableValue,
}
}
switch v.Type() {
case cty.Bool:
return ast.Variable{
Type: ast.TypeBool,
Value: v.True(),
}
case cty.Number:
v := ConfigValueFromHCL2(v)
switch tv := v.(type) {
case int:
return ast.Variable{
Type: ast.TypeInt,
Value: tv,
}
case float64:
return ast.Variable{
Type: ast.TypeFloat,
Value: tv,
}
default:
// should never happen
panic("invalid return value for configValueFromHCL2")
}
case cty.String:
return ast.Variable{
Type: ast.TypeString,
Value: v.AsString(),
}
}
if v.Type().IsListType() || v.Type().IsSetType() || v.Type().IsTupleType() {
l := make([]ast.Variable, 0, v.LengthInt())
it := v.ElementIterator()
for it.Next() {
_, ev := it.Element()
l = append(l, HILVariableFromHCL2Value(ev))
}
// If we were given a tuple then this could actually produce an invalid
// list with non-homogenous types, which we expect to be caught inside
// HIL just like a user-supplied non-homogenous list would be.
return ast.Variable{
Type: ast.TypeList,
Value: l,
}
}
if v.Type().IsMapType() || v.Type().IsObjectType() {
l := make(map[string]ast.Variable)
it := v.ElementIterator()
for it.Next() {
ek, ev := it.Element()
l[ek.AsString()] = HILVariableFromHCL2Value(ev)
}
// If we were given an object then this could actually produce an invalid
// map with non-homogenous types, which we expect to be caught inside
// HIL just like a user-supplied non-homogenous map would be.
return ast.Variable{
Type: ast.TypeMap,
Value: l,
}
}
// If we fall out here then we have some weird type that we haven't
// accounted for. This should never happen unless the caller is using
// capsule types, and we don't currently have any such types defined.
panic(fmt.Errorf("can't convert %#v to HIL variable", v))
}
func HCL2ValueFromHILVariable(v ast.Variable) cty.Value {
switch v.Type {
case ast.TypeList:
vals := make([]cty.Value, len(v.Value.([]ast.Variable)))
for i, ev := range v.Value.([]ast.Variable) {
vals[i] = HCL2ValueFromHILVariable(ev)
}
return cty.TupleVal(vals)
case ast.TypeMap:
vals := make(map[string]cty.Value, len(v.Value.(map[string]ast.Variable)))
for k, ev := range v.Value.(map[string]ast.Variable) {
vals[k] = HCL2ValueFromHILVariable(ev)
}
return cty.ObjectVal(vals)
default:
return HCL2ValueFromConfigValue(v.Value)
}
}
func HCL2TypeForHILType(hilType ast.Type) cty.Type {
switch hilType {
case ast.TypeAny:
return cty.DynamicPseudoType
case ast.TypeUnknown:
return cty.DynamicPseudoType
case ast.TypeBool:
return cty.Bool
case ast.TypeInt:
return cty.Number
case ast.TypeFloat:
return cty.Number
case ast.TypeString:
return cty.String
case ast.TypeList:
return cty.List(cty.DynamicPseudoType)
case ast.TypeMap:
return cty.Map(cty.DynamicPseudoType)
default:
return cty.NilType // equilvalent to ast.TypeInvalid
}
}
package configs
import (
"fmt"
"strconv"
"strings"
"github.com/hashicorp/terraform/addrs"
"github.com/hashicorp/terraform/tfdiags"
"github.com/hashicorp/hil/ast"
)
// An InterpolatedVariable is a variable reference within an interpolation.
//
// Implementations of this interface represents various sources where
// variables can come from: user variables, resources, etc.
type InterpolatedVariable interface {
FullKey() string
SourceRange() tfdiags.SourceRange
}
// varRange can be embedded into an InterpolatedVariable implementation to
// implement the SourceRange method.
type varRange struct {
rng tfdiags.SourceRange
}
func (r varRange) SourceRange() tfdiags.SourceRange {
return r.rng
}
// CountVariable is a variable for referencing information about
// the count.
type CountVariable struct {
Type CountValueType
key string
varRange
}
// CountValueType is the type of the count variable that is referenced.
type CountValueType byte
const (
CountValueInvalid CountValueType = iota
CountValueIndex
)
// A ModuleVariable is a variable that is referencing the output
// of a module, such as "${module.foo.bar}"
type ModuleVariable struct {
Name string
Field string
key string
varRange
}
// A PathVariable is a variable that references path information about the
// module.
type PathVariable struct {
Type PathValueType
key string
varRange
}
type PathValueType byte
const (
PathValueInvalid PathValueType = iota
PathValueCwd
PathValueModule
PathValueRoot
)
// A ResourceVariable is a variable that is referencing the field
// of a resource, such as "${aws_instance.foo.ami}"
type ResourceVariable struct {
Mode addrs.ResourceMode
Type string // Resource type, i.e. "aws_instance"
Name string // Resource name
Field string // Resource field
Multi bool // True if multi-variable: aws_instance.foo.*.id
Index int // Index for multi-variable: aws_instance.foo.1.id == 1
key string
varRange
}
// SelfVariable is a variable that is referencing the same resource
// it is running on: "${self.address}"
type SelfVariable struct {
Field string
key string
varRange
}
// SimpleVariable is an unprefixed variable, which can show up when users have
// strings they are passing down to resources that use interpolation
// internally. The template_file resource is an example of this.
type SimpleVariable struct {
Key string
varRange
}
// TerraformVariable is a "terraform."-prefixed variable used to access
// metadata about the Terraform run.
type TerraformVariable struct {
Field string
key string
varRange
}
// A UserVariable is a variable that is referencing a user variable
// that is inputted from outside the configuration. This looks like
// "${var.foo}"
type UserVariable struct {
Name string
Elem string
key string
varRange
}
// A LocalVariable is a variable that references a local value defined within
// the current module, via a "locals" block. This looks like "${local.foo}".
type LocalVariable struct {
Name string
varRange
}
func NewInterpolatedVariable(v string) (InterpolatedVariable, error) {
if strings.HasPrefix(v, "count.") {
return NewCountVariable(v)
} else if strings.HasPrefix(v, "path.") {
return NewPathVariable(v)
} else if strings.HasPrefix(v, "self.") {
return NewSelfVariable(v)
} else if strings.HasPrefix(v, "terraform.") {
return NewTerraformVariable(v)
} else if strings.HasPrefix(v, "var.") {
return NewUserVariable(v)
} else if strings.HasPrefix(v, "local.") {
return NewLocalVariable(v)
} else if strings.HasPrefix(v, "module.") {
return NewModuleVariable(v)
} else if !strings.ContainsRune(v, '.') {
return NewSimpleVariable(v)
} else {
return NewResourceVariable(v)
}
}
func NewCountVariable(key string) (*CountVariable, error) {
var fieldType CountValueType
parts := strings.SplitN(key, ".", 2)
switch parts[1] {
case "index":
fieldType = CountValueIndex
}
return &CountVariable{
Type: fieldType,
key: key,
}, nil
}
func (c *CountVariable) FullKey() string {
return c.key
}
func NewModuleVariable(key string) (*ModuleVariable, error) {
parts := strings.SplitN(key, ".", 3)
if len(parts) < 3 {
return nil, fmt.Errorf(
"%s: module variables must be three parts: module.name.attr",
key)
}
return &ModuleVariable{
Name: parts[1],
Field: parts[2],
key: key,
}, nil
}
func (v *ModuleVariable) FullKey() string {
return v.key
}
func (v *ModuleVariable) GoString() string {
return fmt.Sprintf("*%#v", *v)
}
func NewPathVariable(key string) (*PathVariable, error) {
var fieldType PathValueType
parts := strings.SplitN(key, ".", 2)
switch parts[1] {
case "cwd":
fieldType = PathValueCwd
case "module":
fieldType = PathValueModule
case "root":
fieldType = PathValueRoot
}
return &PathVariable{
Type: fieldType,
key: key,
}, nil
}
func (v *PathVariable) FullKey() string {
return v.key
}
func NewResourceVariable(key string) (*ResourceVariable, error) {
var mode addrs.ResourceMode
var parts []string
if strings.HasPrefix(key, "data.") {
mode = addrs.DataResourceMode
parts = strings.SplitN(key, ".", 4)
if len(parts) < 4 {
return nil, fmt.Errorf(
"%s: data variables must be four parts: data.TYPE.NAME.ATTR",
key)
}
// Don't actually need the "data." prefix for parsing, since it's
// always constant.
parts = parts[1:]
} else {
mode = addrs.ManagedResourceMode
parts = strings.SplitN(key, ".", 3)
if len(parts) < 3 {
return nil, fmt.Errorf(
"%s: resource variables must be three parts: TYPE.NAME.ATTR",
key)
}
}
field := parts[2]
multi := false
var index int
if idx := strings.Index(field, "."); idx != -1 {
indexStr := field[:idx]
multi = indexStr == "*"
index = -1
if !multi {
indexInt, err := strconv.ParseInt(indexStr, 0, 0)
if err == nil {
multi = true
index = int(indexInt)
}
}
if multi {
field = field[idx+1:]
}
}
return &ResourceVariable{
Mode: mode,
Type: parts[0],
Name: parts[1],
Field: field,
Multi: multi,
Index: index,
key: key,
}, nil
}
func (v *ResourceVariable) ResourceId() string {
switch v.Mode {
case addrs.ManagedResourceMode:
return fmt.Sprintf("%s.%s", v.Type, v.Name)
case addrs.DataResourceMode:
return fmt.Sprintf("data.%s.%s", v.Type, v.Name)
default:
panic(fmt.Errorf("unknown resource mode %s", v.Mode))
}
}
func (v *ResourceVariable) FullKey() string {
return v.key
}
func NewSelfVariable(key string) (*SelfVariable, error) {
field := key[len("self."):]
return &SelfVariable{
Field: field,
key: key,
}, nil
}
func (v *SelfVariable) FullKey() string {
return v.key
}
func (v *SelfVariable) GoString() string {
return fmt.Sprintf("*%#v", *v)
}
func NewSimpleVariable(key string) (*SimpleVariable, error) {
return &SimpleVariable{Key: key}, nil
}
func (v *SimpleVariable) FullKey() string {
return v.Key
}
func (v *SimpleVariable) GoString() string {
return fmt.Sprintf("*%#v", *v)
}
func NewTerraformVariable(key string) (*TerraformVariable, error) {
field := key[len("terraform."):]
return &TerraformVariable{
Field: field,
key: key,
}, nil
}
func (v *TerraformVariable) FullKey() string {
return v.key
}
func (v *TerraformVariable) GoString() string {
return fmt.Sprintf("*%#v", *v)
}
func NewUserVariable(key string) (*UserVariable, error) {
name := key[len("var."):]
elem := ""
if idx := strings.Index(name, "."); idx > -1 {
elem = name[idx+1:]
name = name[:idx]
}
if len(elem) > 0 {
return nil, fmt.Errorf("Invalid dot index found: 'var.%s.%s'. Values in maps and lists can be referenced using square bracket indexing, like: 'var.mymap[\"key\"]' or 'var.mylist[1]'.", name, elem)
}
return &UserVariable{
key: key,
Name: name,
Elem: elem,
}, nil
}
func (v *UserVariable) FullKey() string {
return v.key
}
func (v *UserVariable) GoString() string {
return fmt.Sprintf("*%#v", *v)
}
func NewLocalVariable(key string) (*LocalVariable, error) {
name := key[len("local."):]
if idx := strings.Index(name, "."); idx > -1 {
return nil, fmt.Errorf("Can't use dot (.) attribute access in local.%s; use square bracket indexing", name)
}
return &LocalVariable{
Name: name,
}, nil
}
func (v *LocalVariable) FullKey() string {
return fmt.Sprintf("local.%s", v.Name)
}
func (v *LocalVariable) GoString() string {
return fmt.Sprintf("*%#v", *v)
}
// DetectVariables takes an AST root and returns all the interpolated
// variables that are detected in the AST tree.
func DetectVariables(root ast.Node) ([]InterpolatedVariable, error) {
var result []InterpolatedVariable
var resultErr error
// Visitor callback
fn := func(n ast.Node) ast.Node {
if resultErr != nil {
return n
}
switch vn := n.(type) {
case *ast.VariableAccess:
v, err := NewInterpolatedVariable(vn.Name)
if err != nil {
resultErr = err
return n
}
result = append(result, v)
case *ast.Index:
if va, ok := vn.Target.(*ast.VariableAccess); ok {
v, err := NewInterpolatedVariable(va.Name)
if err != nil {
resultErr = err
return n
}
result = append(result, v)
}
if va, ok := vn.Key.(*ast.VariableAccess); ok {
v, err := NewInterpolatedVariable(va.Name)
if err != nil {
resultErr = err
return n
}
result = append(result, v)
}
default:
return n
}
return n
}
// Visitor pattern
root.Accept(fn)
if resultErr != nil {
return nil, resultErr
}
return result, nil
}
package configs
import (
"reflect"
"strings"
"testing"
"github.com/hashicorp/hil"
"github.com/hashicorp/terraform/addrs"
)
func TestNewInterpolatedVariable(t *testing.T) {
tests := []struct {
Input string
Want InterpolatedVariable
Error bool
}{
{
"var.foo",
&UserVariable{
Name: "foo",
key: "var.foo",
},
false,
},
{
"local.foo",
&LocalVariable{
Name: "foo",
},
false,
},
{
"local.foo.nope",
nil,
true,
},
{
"module.foo.bar",
&ModuleVariable{
Name: "foo",
Field: "bar",
key: "module.foo.bar",
},
false,
},
{
"count.index",
&CountVariable{
Type: CountValueIndex,
key: "count.index",
},
false,
},
{
"count.nope",
&CountVariable{
Type: CountValueInvalid,
key: "count.nope",
},
false,
},
{
"path.module",
&PathVariable{
Type: PathValueModule,
key: "path.module",
},
false,
},
{
"self.address",
&SelfVariable{
Field: "address",
key: "self.address",
},
false,
},
{
"terraform.env",
&TerraformVariable{
Field: "env",
key: "terraform.env",
},
false,
},
}
for i, test := range tests {
t.Run(test.Input, func(t *testing.T) {
got, err := NewInterpolatedVariable(test.Input)
if err != nil != test.Error {
t.Errorf("%d. Error: %s", i, err)
}
if !test.Error && !reflect.DeepEqual(got, test.Want) {
t.Errorf(
"wrong result\ninput: %s\ngot: %#v\nwant: %#v",
test.Input, got, test.Want,
)
}
})
}
}
func TestNewResourceVariable(t *testing.T) {
v, err := NewResourceVariable("foo.bar.baz")
if err != nil {
t.Fatalf("err: %s", err)
}
if v.Mode != addrs.ManagedResourceMode {
t.Fatalf("bad: %#v", v)
}
if v.Type != "foo" {
t.Fatalf("bad: %#v", v)
}
if v.Name != "bar" {
t.Fatalf("bad: %#v", v)
}
if v.Field != "baz" {
t.Fatalf("bad: %#v", v)
}
if v.Multi {
t.Fatal("should not be multi")
}
if v.FullKey() != "foo.bar.baz" {
t.Fatalf("bad: %#v", v)
}
}
func TestNewResourceVariableData(t *testing.T) {
v, err := NewResourceVariable("data.foo.bar.baz")
if err != nil {
t.Fatalf("err: %s", err)
}
if v.Mode != addrs.DataResourceMode {
t.Fatalf("bad: %#v", v)
}
if v.Type != "foo" {
t.Fatalf("bad: %#v", v)
}
if v.Name != "bar" {
t.Fatalf("bad: %#v", v)
}
if v.Field != "baz" {
t.Fatalf("bad: %#v", v)
}
if v.Multi {
t.Fatal("should not be multi")
}
if v.FullKey() != "data.foo.bar.baz" {
t.Fatalf("bad: %#v", v)
}
}
func TestNewUserVariable(t *testing.T) {
v, err := NewUserVariable("var.bar")
if err != nil {
t.Fatalf("err: %s", err)
}
if v.Name != "bar" {
t.Fatalf("bad: %#v", v.Name)
}
if v.FullKey() != "var.bar" {
t.Fatalf("bad: %#v", v)
}
}
func TestNewUserVariable_oldMapDotIndexErr(t *testing.T) {
_, err := NewUserVariable("var.bar.baz")
if err == nil || !strings.Contains(err.Error(), "Invalid dot index") {
t.Fatalf("Expected dot index err, got: %#v", err)
}
}
func TestResourceVariable_impl(t *testing.T) {
var _ InterpolatedVariable = new(ResourceVariable)
}
func TestResourceVariable_Multi(t *testing.T) {
v, err := NewResourceVariable("foo.bar.*.baz")
if err != nil {
t.Fatalf("err: %s", err)
}
if v.Type != "foo" {
t.Fatalf("bad: %#v", v)
}
if v.Name != "bar" {
t.Fatalf("bad: %#v", v)
}
if v.Field != "baz" {
t.Fatalf("bad: %#v", v)
}
if !v.Multi {
t.Fatal("should be multi")
}
}
func TestResourceVariable_MultiIndex(t *testing.T) {
cases := []struct {
Input string
Index int
Field string
}{
{"foo.bar.*.baz", -1, "baz"},
{"foo.bar.0.baz", 0, "baz"},
{"foo.bar.5.baz", 5, "baz"},
}
for _, tc := range cases {
v, err := NewResourceVariable(tc.Input)
if err != nil {
t.Fatalf("err: %s", err)
}
if !v.Multi {
t.Fatalf("should be multi: %s", tc.Input)
}
if v.Index != tc.Index {
t.Fatalf("bad: %d\n\n%s", v.Index, tc.Input)
}
if v.Field != tc.Field {
t.Fatalf("bad: %s\n\n%s", v.Field, tc.Input)
}
}
}
func TestUserVariable_impl(t *testing.T) {
var _ InterpolatedVariable = new(UserVariable)
}
func TestDetectVariables(t *testing.T) {
cases := []struct {
Input string
Result []InterpolatedVariable
}{
{
"foo $${var.foo}",
nil,
},
{
"foo ${var.foo}",
[]InterpolatedVariable{
&UserVariable{
Name: "foo",
key: "var.foo",
},
},
},
{
"foo ${var.foo} ${var.bar}",
[]InterpolatedVariable{
&UserVariable{
Name: "foo",
key: "var.foo",
},
&UserVariable{
Name: "bar",
key: "var.bar",
},
},
},
{
`foo ${module.foo.output["key"]}`,
[]InterpolatedVariable{
&ModuleVariable{
Name: "foo",
Field: "output",
key: "module.foo.output",
},
&ModuleVariable{
Name: "foo",
Field: "output",
key: "module.foo.output",
},
},
},
}
for _, tc := range cases {
ast, err := hil.Parse(tc.Input)
if err != nil {
t.Fatalf("%s\n\nInput: %s", err, tc.Input)
}
actual, err := DetectVariables(ast)
if err != nil {
t.Fatalf("err: %s", err)
}
if !reflect.DeepEqual(actual, tc.Result) {
t.Fatalf("bad: %#v\n\nInput: %s", actual, tc.Input)
}
}
}
package configs
import (
"fmt"
"reflect"
"strings"
"github.com/hashicorp/hil"
"github.com/hashicorp/hil/ast"
"github.com/hashicorp/terraform/configs/hcl2shim"
"github.com/mitchellh/reflectwalk"
)
// interpolationWalker implements interfaces for the reflectwalk package
// (github.com/mitchellh/reflectwalk) that can be used to automatically
// execute a callback for an interpolation.
type interpolationWalker struct {
// F is the function to call for every interpolation. It can be nil.
//
// If Replace is true, then the return value of F will be used to
// replace the interpolation.
F interpolationWalkerFunc
Replace bool
// ContextF is an advanced version of F that also receives the
// location of where it is in the structure. This lets you do
// context-aware validation.
ContextF interpolationWalkerContextFunc
key []string
lastValue reflect.Value
loc reflectwalk.Location
cs []reflect.Value
csKey []reflect.Value
csData interface{}
sliceIndex []int
unknownKeys []string
}
// interpolationWalkerFunc is the callback called by interpolationWalk.
// It is called with any interpolation found. It should return a value
// to replace the interpolation with, along with any errors.
//
// If Replace is set to false in interpolationWalker, then the replace
// value can be anything as it will have no effect.
type interpolationWalkerFunc func(ast.Node) (interface{}, error)
// interpolationWalkerContextFunc is called by interpolationWalk if
// ContextF is set. This receives both the interpolation and the location
// where the interpolation is.
//
// This callback can be used to validate the location of the interpolation
// within the configuration.
type interpolationWalkerContextFunc func(reflectwalk.Location, ast.Node)
func (w *interpolationWalker) Enter(loc reflectwalk.Location) error {
w.loc = loc
return nil
}
func (w *interpolationWalker) Exit(loc reflectwalk.Location) error {
w.loc = reflectwalk.None
switch loc {
case reflectwalk.Map:
w.cs = w.cs[:len(w.cs)-1]
case reflectwalk.MapValue:
w.key = w.key[:len(w.key)-1]
w.csKey = w.csKey[:len(w.csKey)-1]
case reflectwalk.Slice:
// Split any values that need to be split
w.splitSlice()
w.cs = w.cs[:len(w.cs)-1]
case reflectwalk.SliceElem:
w.csKey = w.csKey[:len(w.csKey)-1]
w.sliceIndex = w.sliceIndex[:len(w.sliceIndex)-1]
}
return nil
}
func (w *interpolationWalker) Map(m reflect.Value) error {
w.cs = append(w.cs, m)
return nil
}
func (w *interpolationWalker) MapElem(m, k, v reflect.Value) error {
w.csData = k
w.csKey = append(w.csKey, k)
if l := len(w.sliceIndex); l > 0 {
w.key = append(w.key, fmt.Sprintf("%d.%s", w.sliceIndex[l-1], k.String()))
} else {
w.key = append(w.key, k.String())
}
w.lastValue = v
return nil
}
func (w *interpolationWalker) Slice(s reflect.Value) error {
w.cs = append(w.cs, s)
return nil
}
func (w *interpolationWalker) SliceElem(i int, elem reflect.Value) error {
w.csKey = append(w.csKey, reflect.ValueOf(i))
w.sliceIndex = append(w.sliceIndex, i)
return nil
}
func (w *interpolationWalker) Primitive(v reflect.Value) error {
setV := v
// We only care about strings
if v.Kind() == reflect.Interface {
setV = v
v = v.Elem()
}
if v.Kind() != reflect.String {
return nil
}
astRoot, err := hil.Parse(v.String())
if err != nil {
return err
}
// If the AST we got is just a literal string value with the same
// value then we ignore it. We have to check if its the same value
// because it is possible to input a string, get out a string, and
// have it be different. For example: "foo-$${bar}" turns into
// "foo-${bar}"
if n, ok := astRoot.(*ast.LiteralNode); ok {
if s, ok := n.Value.(string); ok && s == v.String() {
return nil
}
}
if w.ContextF != nil {
w.ContextF(w.loc, astRoot)
}
if w.F == nil {
return nil
}
replaceVal, err := w.F(astRoot)
if err != nil {
return fmt.Errorf(
"%s in:\n\n%s",
err, v.String())
}
if w.Replace {
// We need to determine if we need to remove this element
// if the result contains any "UnknownVariableValue" which is
// set if it is computed. This behavior is different if we're
// splitting (in a SliceElem) or not.
remove := false
if w.loc == reflectwalk.SliceElem {
switch typedReplaceVal := replaceVal.(type) {
case string:
if typedReplaceVal == hcl2shim.UnknownVariableValue {
remove = true
}
case []interface{}:
if hasUnknownValue(typedReplaceVal) {
remove = true
}
}
} else if replaceVal == hcl2shim.UnknownVariableValue {
remove = true
}
if remove {
w.unknownKeys = append(w.unknownKeys, strings.Join(w.key, "."))
}
resultVal := reflect.ValueOf(replaceVal)
switch w.loc {
case reflectwalk.MapKey:
m := w.cs[len(w.cs)-1]
// Delete the old value
var zero reflect.Value
m.SetMapIndex(w.csData.(reflect.Value), zero)
// Set the new key with the existing value
m.SetMapIndex(resultVal, w.lastValue)
// Set the key to be the new key
w.csData = resultVal
case reflectwalk.MapValue:
// If we're in a map, then the only way to set a map value is
// to set it directly.
m := w.cs[len(w.cs)-1]
mk := w.csData.(reflect.Value)
m.SetMapIndex(mk, resultVal)
default:
// Otherwise, we should be addressable
setV.Set(resultVal)
}
}
return nil
}
func (w *interpolationWalker) replaceCurrent(v reflect.Value) {
// if we don't have at least 2 values, we're not going to find a map, but
// we could panic.
if len(w.cs) < 2 {
return
}
c := w.cs[len(w.cs)-2]
switch c.Kind() {
case reflect.Map:
// Get the key and delete it
k := w.csKey[len(w.csKey)-1]
c.SetMapIndex(k, v)
}
}
func hasUnknownValue(variable []interface{}) bool {
for _, value := range variable {
if strVal, ok := value.(string); ok {
if strVal == hcl2shim.UnknownVariableValue {
return true
}
}
}
return false
}
func (w *interpolationWalker) splitSlice() {
raw := w.cs[len(w.cs)-1]
var s []interface{}
switch v := raw.Interface().(type) {
case []interface{}:
s = v
case []map[string]interface{}:
return
}
split := false
for _, val := range s {
if varVal, ok := val.(ast.Variable); ok && varVal.Type == ast.TypeList {
split = true
}
if _, ok := val.([]interface{}); ok {
split = true
}
}
if !split {
return
}
result := make([]interface{}, 0)
for _, v := range s {
switch val := v.(type) {
case ast.Variable:
switch val.Type {
case ast.TypeList:
elements := val.Value.([]ast.Variable)
for _, element := range elements {
result = append(result, element.Value)
}
default:
result = append(result, val.Value)
}
case []interface{}:
result = append(result, val...)
default:
result = append(result, v)
}
}
w.replaceCurrent(reflect.ValueOf(result))
}
package configs
import (
"fmt"
"reflect"
"testing"
"github.com/hashicorp/hil/ast"
"github.com/hashicorp/terraform/configs/hcl2shim"
"github.com/mitchellh/reflectwalk"
)
func TestInterpolationWalker_detect(t *testing.T) {
cases := []struct {
Input interface{}
Result []string
}{
{
Input: map[string]interface{}{
"foo": "$${var.foo}",
},
Result: []string{
"Literal(TypeString, ${var.foo})",
},
},
{
Input: map[string]interface{}{
"foo": "${var.foo}",
},
Result: []string{
"Variable(var.foo)",
},
},
{
Input: map[string]interface{}{
"foo": "${aws_instance.foo.*.num}",
},
Result: []string{
"Variable(aws_instance.foo.*.num)",
},
},
{
Input: map[string]interface{}{
"foo": "${lookup(var.foo)}",
},
Result: []string{
"Call(lookup, Variable(var.foo))",
},
},
{
Input: map[string]interface{}{
"foo": `${file("test.txt")}`,
},
Result: []string{
"Call(file, Literal(TypeString, test.txt))",
},
},
{
Input: map[string]interface{}{
"foo": `${file("foo/bar.txt")}`,
},
Result: []string{
"Call(file, Literal(TypeString, foo/bar.txt))",
},
},
{
Input: map[string]interface{}{
"foo": `${join(",", foo.bar.*.id)}`,
},
Result: []string{
"Call(join, Literal(TypeString, ,), Variable(foo.bar.*.id))",
},
},
{
Input: map[string]interface{}{
"foo": `${concat("localhost", ":8080")}`,
},
Result: []string{
"Call(concat, Literal(TypeString, localhost), Literal(TypeString, :8080))",
},
},
}
for i, tc := range cases {
var actual []string
detectFn := func(root ast.Node) (interface{}, error) {
actual = append(actual, fmt.Sprintf("%s", root))
return "", nil
}
w := &interpolationWalker{F: detectFn}
if err := reflectwalk.Walk(tc.Input, w); err != nil {
t.Fatalf("err: %s", err)
}
if !reflect.DeepEqual(actual, tc.Result) {
t.Fatalf("%d: bad:\n\n%#v", i, actual)
}
}
}
func TestInterpolationWalker_replace(t *testing.T) {
cases := []struct {
Input interface{}
Output interface{}
Value interface{}
}{
{
Input: map[string]interface{}{
"foo": "$${var.foo}",
},
Output: map[string]interface{}{
"foo": "bar",
},
Value: "bar",
},
{
Input: map[string]interface{}{
"foo": "hello, ${var.foo}",
},
Output: map[string]interface{}{
"foo": "bar",
},
Value: "bar",
},
{
Input: map[string]interface{}{
"foo": map[string]interface{}{
"${var.foo}": "bar",
},
},
Output: map[string]interface{}{
"foo": map[string]interface{}{
"bar": "bar",
},
},
Value: "bar",
},
{
Input: map[string]interface{}{
"foo": []interface{}{
"${var.foo}",
"bing",
},
},
Output: map[string]interface{}{
"foo": []interface{}{
"bar",
"baz",
"bing",
},
},
Value: []interface{}{"bar", "baz"},
},
{
Input: map[string]interface{}{
"foo": []interface{}{
"${var.foo}",
"bing",
},
},
Output: map[string]interface{}{
"foo": []interface{}{
hcl2shim.UnknownVariableValue,
"baz",
"bing",
},
},
Value: []interface{}{hcl2shim.UnknownVariableValue, "baz"},
},
}
for i, tc := range cases {
fn := func(ast.Node) (interface{}, error) {
return tc.Value, nil
}
t.Run(fmt.Sprintf("walk-%d", i), func(t *testing.T) {
w := &interpolationWalker{F: fn, Replace: true}
if err := reflectwalk.Walk(tc.Input, w); err != nil {
t.Fatalf("err: %s", err)
}
if !reflect.DeepEqual(tc.Input, tc.Output) {
t.Fatalf("%d: bad:\n\nexpected:%#v\ngot:%#v", i, tc.Output, tc.Input)
}
})
}
}
package configs
import (
"bytes"
"encoding/gob"
"errors"
"strconv"
"sync"
hcl2 "github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hil"
"github.com/hashicorp/hil/ast"
"github.com/mitchellh/copystructure"
"github.com/mitchellh/reflectwalk"
)
// RawConfig is a structure that holds a piece of configuration
// where the overall structure is unknown since it will be used
// to configure a plugin or some other similar external component.
//
// RawConfigs can be interpolated with variables that come from
// other resources, user variables, etc.
//
// RawConfig supports a query-like interface to request
// information from deep within the structure.
type RawConfig struct {
Key string
// Only _one_ of Raw and Body may be populated at a time.
//
// In the normal case, Raw is populated and Body is nil.
//
// When the experimental HCL2 parsing mode is enabled, "Body"
// is populated and RawConfig serves only to transport the hcl2.Body
// through the rest of Terraform core so we can ultimately decode it
// once its schema is known.
//
// Once we transition to HCL2 as the primary representation, RawConfig
// should be removed altogether and the hcl2.Body should be passed
// around directly.
Raw map[string]interface{}
Body hcl2.Body
Interpolations []ast.Node
Variables map[string]InterpolatedVariable
lock sync.Mutex
config map[string]interface{}
unknownKeys []string
}
// NewRawConfig creates a new RawConfig structure and populates the
// publicly readable struct fields.
func NewRawConfig(raw map[string]interface{}) (*RawConfig, error) {
result := &RawConfig{Raw: raw}
if err := result.init(); err != nil {
return nil, err
}
return result, nil
}
// NewRawConfigHCL2 creates a new RawConfig that is serving as a capsule
// to transport a hcl2.Body. In this mode, the publicly-readable struct
// fields are not populated since all operations should instead be diverted
// to the HCL2 body.
//
// For a RawConfig object constructed with this function, the only valid use
// is to later retrieve the Body value and call its own methods. Callers
// may choose to set and then later handle the Key field, in a manner
// consistent with how it is handled by the Value method, but the Value
// method itself must not be used.
//
// This is an experimental codepath to be used only by the HCL2 config loader.
// Non-experimental parsing should _always_ use NewRawConfig to produce a
// fully-functional RawConfig object.
func NewRawConfigHCL2(body hcl2.Body) *RawConfig {
return &RawConfig{
Body: body,
}
}
// RawMap returns a copy of the RawConfig.Raw map.
func (r *RawConfig) RawMap() map[string]interface{} {
r.lock.Lock()
defer r.lock.Unlock()
m := make(map[string]interface{})
for k, v := range r.Raw {
m[k] = v
}
return m
}
// Copy returns a copy of this RawConfig, uninterpolated.
func (r *RawConfig) Copy() *RawConfig {
if r == nil {
return nil
}
r.lock.Lock()
defer r.lock.Unlock()
if r.Body != nil {
return NewRawConfigHCL2(r.Body)
}
newRaw := make(map[string]interface{})
for k, v := range r.Raw {
newRaw[k] = v
}
result, err := NewRawConfig(newRaw)
if err != nil {
panic("copy failed: " + err.Error())
}
result.Key = r.Key
return result
}
// Value returns the value of the configuration if this configuration
// has a Key set. If this does not have a Key set, nil will be returned.
func (r *RawConfig) Value() interface{} {
if c := r.Config(); c != nil {
if v, ok := c[r.Key]; ok {
return v
}
}
r.lock.Lock()
defer r.lock.Unlock()
return r.Raw[r.Key]
}
// Config returns the entire configuration with the variables
// interpolated from any call to Interpolate.
//
// If any interpolated variables are unknown (value set to
// UnknownVariableValue), the first non-container (map, slice, etc.) element
// will be removed from the config. The keys of unknown variables
// can be found using the UnknownKeys function.
//
// By pruning out unknown keys from the configuration, the raw
// structure will always successfully decode into its ultimate
// structure using something like mapstructure.
func (r *RawConfig) Config() map[string]interface{} {
r.lock.Lock()
defer r.lock.Unlock()
return r.config
}
// Interpolate uses the given mapping of variable values and uses
// those as the values to replace any variables in this raw
// configuration.
//
// Any prior calls to Interpolate are replaced with this one.
//
// If a variable key is missing, this will panic.
func (r *RawConfig) Interpolate(vs map[string]ast.Variable) error {
r.lock.Lock()
defer r.lock.Unlock()
// Create the evaluation configuration we use to execute
config := &hil.EvalConfig{
GlobalScope: &ast.BasicScope{
VarMap: vs,
},
}
return r.interpolate(func(root ast.Node) (interface{}, error) {
// None of the variables we need are computed, meaning we should
// be able to properly evaluate.
result, err := hil.Eval(root, config)
if err != nil {
return "", err
}
return result.Value, nil
})
}
// Merge merges another RawConfig into this one (overriding any conflicting
// values in this config) and returns a new config. The original config
// is not modified.
func (r *RawConfig) Merge(other *RawConfig) *RawConfig {
r.lock.Lock()
defer r.lock.Unlock()
// Merge the raw configurations
raw := make(map[string]interface{})
for k, v := range r.Raw {
raw[k] = v
}
for k, v := range other.Raw {
raw[k] = v
}
// Create the result
result, err := NewRawConfig(raw)
if err != nil {
panic(err)
}
// Merge the interpolated results
result.config = make(map[string]interface{})
for k, v := range r.config {
result.config[k] = v
}
for k, v := range other.config {
result.config[k] = v
}
// Build the unknown keys
if len(r.unknownKeys) > 0 || len(other.unknownKeys) > 0 {
unknownKeys := make(map[string]struct{})
for _, k := range r.unknownKeys {
unknownKeys[k] = struct{}{}
}
for _, k := range other.unknownKeys {
unknownKeys[k] = struct{}{}
}
result.unknownKeys = make([]string, 0, len(unknownKeys))
for k, _ := range unknownKeys {
result.unknownKeys = append(result.unknownKeys, k)
}
}
return result
}
func (r *RawConfig) init() error {
r.lock.Lock()
defer r.lock.Unlock()
r.config = r.Raw
r.Interpolations = nil
r.Variables = nil
fn := func(node ast.Node) (interface{}, error) {
r.Interpolations = append(r.Interpolations, node)
vars, err := DetectVariables(node)
if err != nil {
return "", err
}
for _, v := range vars {
if r.Variables == nil {
r.Variables = make(map[string]InterpolatedVariable)
}
r.Variables[v.FullKey()] = v
}
return "", nil
}
walker := &interpolationWalker{F: fn}
if err := reflectwalk.Walk(r.Raw, walker); err != nil {
return err
}
return nil
}
func (r *RawConfig) interpolate(fn interpolationWalkerFunc) error {
if r.Body != nil {
// For RawConfigs created for the HCL2 experiement, callers must
// use the HCL2 Body API directly rather than interpolating via
// the RawConfig.
return errors.New("this feature is not yet supported under the HCL2 experiment")
}
config, err := copystructure.Copy(r.Raw)
if err != nil {
return err
}
r.config = config.(map[string]interface{})
w := &interpolationWalker{F: fn, Replace: true}
err = reflectwalk.Walk(r.config, w)
if err != nil {
return err
}
r.unknownKeys = w.unknownKeys
return nil
}
func (r *RawConfig) merge(r2 *RawConfig) *RawConfig {
if r == nil && r2 == nil {
return nil
}
if r == nil {
r = &RawConfig{}
}
rawRaw, err := copystructure.Copy(r.Raw)
if err != nil {
panic(err)
}
raw := rawRaw.(map[string]interface{})
if r2 != nil {
for k, v := range r2.Raw {
raw[k] = v
}
}
result, err := NewRawConfig(raw)
if err != nil {
panic(err)
}
return result
}
// couldBeInteger is a helper that determines if the represented value could
// result in an integer.
//
// This function only works for RawConfigs that have "Key" set, meaning that
// a single result can be produced. Calling this function will overwrite
// the Config and Value results to be a test value.
//
// This function is conservative. If there is some doubt about whether the
// result could be an integer -- for example, if it depends on a variable
// whose type we don't know yet -- it will still return true.
func (r *RawConfig) couldBeInteger() bool {
if r.Key == "" {
// un-keyed RawConfigs can never produce numbers
return false
}
if r.Body == nil {
// Normal path: using the interpolator in this package
// Interpolate with a fixed number to verify that its a number.
r.interpolate(func(root ast.Node) (interface{}, error) {
// Execute the node but transform the AST so that it returns
// a fixed value of "5" for all interpolations.
result, err := hil.Eval(
hil.FixedValueTransform(
root, &ast.LiteralNode{Value: "5", Typex: ast.TypeString}),
nil)
if err != nil {
return "", err
}
return result.Value, nil
})
_, err := strconv.ParseInt(r.Value().(string), 0, 0)
return err == nil
} else {
// We briefly tried to gradually implement HCL2 support by adding a
// branch here, but that experiment was not successful.
panic("HCL2 experimental path no longer supported")
}
}
// UnknownKeys returns the keys of the configuration that are unknown
// because they had interpolated variables that must be computed.
func (r *RawConfig) UnknownKeys() []string {
r.lock.Lock()
defer r.lock.Unlock()
return r.unknownKeys
}
// See GobEncode
func (r *RawConfig) GobDecode(b []byte) error {
var data gobRawConfig
err := gob.NewDecoder(bytes.NewReader(b)).Decode(&data)
if err != nil {
return err
}
r.Key = data.Key
r.Raw = data.Raw
return r.init()
}
// GobEncode is a custom Gob encoder to use so that we only include the
// raw configuration. Interpolated variables and such are lost and the
// tree of interpolated variables is recomputed on decode, since it is
// referentially transparent.
func (r *RawConfig) GobEncode() ([]byte, error) {
r.lock.Lock()
defer r.lock.Unlock()
data := gobRawConfig{
Key: r.Key,
Raw: r.Raw,
}
var buf bytes.Buffer
if err := gob.NewEncoder(&buf).Encode(data); err != nil {
return nil, err
}
return buf.Bytes(), nil
}
type gobRawConfig struct {
Key string
Raw map[string]interface{}
}
package configs
import (
"encoding/gob"
"reflect"
"testing"
hcl2 "github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hil/ast"
"github.com/hashicorp/terraform/configs/hcl2shim"
)
func TestNewRawConfig(t *testing.T) {
raw := map[string]interface{}{
"foo": "${var.bar}",
"bar": `${file("boom.txt")}`,
}
rc, err := NewRawConfig(raw)
if err != nil {
t.Fatalf("err: %s", err)
}
if len(rc.Interpolations) != 2 {
t.Fatalf("bad: %#v", rc.Interpolations)
}
if len(rc.Variables) != 1 {
t.Fatalf("bad: %#v", rc.Variables)
}
}
func TestRawConfig_basic(t *testing.T) {
raw := map[string]interface{}{
"foo": "${var.bar}",
}
rc, err := NewRawConfig(raw)
if err != nil {
t.Fatalf("err: %s", err)
}
// Before interpolate, Config() should be the raw
if !reflect.DeepEqual(rc.Config(), raw) {
t.Fatalf("bad: %#v", rc.Config())
}
vars := map[string]ast.Variable{
"var.bar": ast.Variable{
Value: "baz",
Type: ast.TypeString,
},
}
if err := rc.Interpolate(vars); err != nil {
t.Fatalf("err: %s", err)
}
actual := rc.Config()
expected := map[string]interface{}{
"foo": "baz",
}
if !reflect.DeepEqual(actual, expected) {
t.Fatalf("bad: %#v", actual)
}
if len(rc.UnknownKeys()) != 0 {
t.Fatalf("bad: %#v", rc.UnknownKeys())
}
}
func TestRawConfig_double(t *testing.T) {
raw := map[string]interface{}{
"foo": "${var.bar}",
}
rc, err := NewRawConfig(raw)
if err != nil {
t.Fatalf("err: %s", err)
}
vars := map[string]ast.Variable{
"var.bar": ast.Variable{
Value: "baz",
Type: ast.TypeString,
},
}
if err := rc.Interpolate(vars); err != nil {
t.Fatalf("err: %s", err)
}
actual := rc.Config()
expected := map[string]interface{}{
"foo": "baz",
}
if !reflect.DeepEqual(actual, expected) {
t.Fatalf("bad: %#v", actual)
}
vars = map[string]ast.Variable{
"var.bar": ast.Variable{
Value: "what",
Type: ast.TypeString,
},
}
if err := rc.Interpolate(vars); err != nil {
t.Fatalf("err: %s", err)
}
actual = rc.Config()
expected = map[string]interface{}{
"foo": "what",
}
if !reflect.DeepEqual(actual, expected) {
t.Fatalf("bad: %#v", actual)
}
}
func TestRawConfigInterpolate_escaped(t *testing.T) {
raw := map[string]interface{}{
"foo": "bar-$${baz}",
}
rc, err := NewRawConfig(raw)
if err != nil {
t.Fatalf("err: %s", err)
}
// Before interpolate, Config() should be the raw
if !reflect.DeepEqual(rc.Config(), raw) {
t.Fatalf("bad: %#v", rc.Config())
}
if err := rc.Interpolate(nil); err != nil {
t.Fatalf("err: %s", err)
}
actual := rc.Config()
expected := map[string]interface{}{
"foo": "bar-${baz}",
}
if !reflect.DeepEqual(actual, expected) {
t.Fatalf("bad: %#v", actual)
}
if len(rc.UnknownKeys()) != 0 {
t.Fatalf("bad: %#v", rc.UnknownKeys())
}
}
func TestRawConfig_merge(t *testing.T) {
raw1 := map[string]interface{}{
"foo": "${var.foo}",
"bar": "${var.bar}",
}
rc1, err := NewRawConfig(raw1)
if err != nil {
t.Fatalf("err: %s", err)
}
{
vars := map[string]ast.Variable{
"var.foo": ast.Variable{
Value: "foovalue",
Type: ast.TypeString,
},
"var.bar": ast.Variable{
Value: "nope",
Type: ast.TypeString,
},
}
if err := rc1.Interpolate(vars); err != nil {
t.Fatalf("err: %s", err)
}
}
raw2 := map[string]interface{}{
"bar": "${var.bar}",
"baz": "${var.baz}",
}
rc2, err := NewRawConfig(raw2)
if err != nil {
t.Fatalf("err: %s", err)
}
{
vars := map[string]ast.Variable{
"var.bar": ast.Variable{
Value: "barvalue",
Type: ast.TypeString,
},
"var.baz": ast.Variable{
Value: hcl2shim.UnknownVariableValue,
Type: ast.TypeUnknown,
},
}
if err := rc2.Interpolate(vars); err != nil {
t.Fatalf("err: %s", err)
}
}
// Merge the two
rc3 := rc1.Merge(rc2)
// Raw should be merged
raw3 := map[string]interface{}{
"foo": "${var.foo}",
"bar": "${var.bar}",
"baz": "${var.baz}",
}
if !reflect.DeepEqual(rc3.Raw, raw3) {
t.Fatalf("bad: %#v", rc3.Raw)
}
actual := rc3.Config()
expected := map[string]interface{}{
"foo": "foovalue",
"bar": "barvalue",
"baz": hcl2shim.UnknownVariableValue,
}
if !reflect.DeepEqual(actual, expected) {
t.Fatalf("bad: %#v", actual)
}
expectedKeys := []string{"baz"}
if !reflect.DeepEqual(rc3.UnknownKeys(), expectedKeys) {
t.Fatalf("bad: %#v", rc3.UnknownKeys())
}
}
func TestRawConfig_syntax(t *testing.T) {
raw := map[string]interface{}{
"foo": "${var",
}
if _, err := NewRawConfig(raw); err == nil {
t.Fatal("should error")
}
}
func TestRawConfig_unknown(t *testing.T) {
raw := map[string]interface{}{
"foo": "${var.bar}",
}
rc, err := NewRawConfig(raw)
if err != nil {
t.Fatalf("err: %s", err)
}
vars := map[string]ast.Variable{
"var.bar": ast.Variable{
Value: hcl2shim.UnknownVariableValue,
Type: ast.TypeUnknown,
},
}
if err := rc.Interpolate(vars); err != nil {
t.Fatalf("err: %s", err)
}
actual := rc.Config()
expected := map[string]interface{}{"foo": hcl2shim.UnknownVariableValue}
if !reflect.DeepEqual(actual, expected) {
t.Fatalf("bad: %#v", actual)
}
expectedKeys := []string{"foo"}
if !reflect.DeepEqual(rc.UnknownKeys(), expectedKeys) {
t.Fatalf("bad: %#v", rc.UnknownKeys())
}
}
func TestRawConfig_unknownPartial(t *testing.T) {
raw := map[string]interface{}{
"foo": "${var.bar}/32",
}
rc, err := NewRawConfig(raw)
if err != nil {
t.Fatalf("err: %s", err)
}
vars := map[string]ast.Variable{
"var.bar": ast.Variable{
Value: hcl2shim.UnknownVariableValue,
Type: ast.TypeUnknown,
},
}
if err := rc.Interpolate(vars); err != nil {
t.Fatalf("err: %s", err)
}
actual := rc.Config()
expected := map[string]interface{}{"foo": hcl2shim.UnknownVariableValue}
if !reflect.DeepEqual(actual, expected) {
t.Fatalf("bad: %#v", actual)
}
expectedKeys := []string{"foo"}
if !reflect.DeepEqual(rc.UnknownKeys(), expectedKeys) {
t.Fatalf("bad: %#v", rc.UnknownKeys())
}
}
func TestRawConfig_unknownPartialList(t *testing.T) {
raw := map[string]interface{}{
"foo": []interface{}{
"${var.bar}/32",
},
}
rc, err := NewRawConfig(raw)
if err != nil {
t.Fatalf("err: %s", err)
}
vars := map[string]ast.Variable{
"var.bar": ast.Variable{
Value: hcl2shim.UnknownVariableValue,
Type: ast.TypeUnknown,
},
}
if err := rc.Interpolate(vars); err != nil {
t.Fatalf("err: %s", err)
}
actual := rc.Config()
expected := map[string]interface{}{"foo": []interface{}{hcl2shim.UnknownVariableValue}}
if !reflect.DeepEqual(actual, expected) {
t.Fatalf("bad: %#v", actual)
}
expectedKeys := []string{"foo"}
if !reflect.DeepEqual(rc.UnknownKeys(), expectedKeys) {
t.Fatalf("bad: %#v", rc.UnknownKeys())
}
}
// This tests a race found where we were not maintaining the "slice index"
// accounting properly. The result would be that some computed keys would
// look like they had no slice index when they in fact do. This test is not
// very reliable but it did fail before the fix and passed after.
func TestRawConfig_sliceIndexLoss(t *testing.T) {
raw := map[string]interface{}{
"slice": []map[string]interface{}{
map[string]interface{}{
"foo": []interface{}{"foo/${var.unknown}"},
"bar": []interface{}{"bar"},
},
},
}
vars := map[string]ast.Variable{
"var.unknown": ast.Variable{
Value: hcl2shim.UnknownVariableValue,
Type: ast.TypeUnknown,
},
"var.known": ast.Variable{
Value: "123456",
Type: ast.TypeString,
},
}
// We run it a lot because its fast and we try to get a race out
for i := 0; i < 50; i++ {
rc, err := NewRawConfig(raw)
if err != nil {
t.Fatalf("err: %s", err)
}
if err := rc.Interpolate(vars); err != nil {
t.Fatalf("err: %s", err)
}
expectedKeys := []string{"slice.0.foo"}
if !reflect.DeepEqual(rc.UnknownKeys(), expectedKeys) {
t.Fatalf("bad: %#v", rc.UnknownKeys())
}
}
}
func TestRawConfigCopy(t *testing.T) {
raw := map[string]interface{}{
"foo": "${var.bar}",
}
rc, err := NewRawConfig(raw)
if err != nil {
t.Fatalf("err: %s", err)
}
rc.Key = "foo"
if rc.Value() != "${var.bar}" {
t.Fatalf("err: %#v", rc.Value())
}
// Interpolate the first one
vars := map[string]ast.Variable{
"var.bar": ast.Variable{
Value: "baz",
Type: ast.TypeString,
},
}
if err := rc.Interpolate(vars); err != nil {
t.Fatalf("err: %s", err)
}
if rc.Value() != "baz" {
t.Fatalf("bad: %#v", rc.Value())
}
// Copy and interpolate
{
rc2 := rc.Copy()
if rc2.Value() != "${var.bar}" {
t.Fatalf("err: %#v", rc2.Value())
}
vars := map[string]ast.Variable{
"var.bar": ast.Variable{
Value: "qux",
Type: ast.TypeString,
},
}
if err := rc2.Interpolate(vars); err != nil {
t.Fatalf("err: %s", err)
}
if rc2.Value() != "qux" {
t.Fatalf("bad: %#v", rc2.Value())
}
}
}
func TestRawConfigCopyHCL2(t *testing.T) {
rc := NewRawConfigHCL2(hcl2.EmptyBody())
rc2 := rc.Copy()
if rc.Body == nil {
t.Errorf("RawConfig copy has a nil Body")
}
if rc2.Raw != nil {
t.Errorf("RawConfig copy got a non-nil Raw")
}
}
func TestRawConfigValue(t *testing.T) {
raw := map[string]interface{}{
"foo": "${var.bar}",
}
rc, err := NewRawConfig(raw)
if err != nil {
t.Fatalf("err: %s", err)
}
rc.Key = ""
if rc.Value() != nil {
t.Fatalf("bad: %#v", rc.Value())
}
rc.Key = "foo"
if rc.Value() != "${var.bar}" {
t.Fatalf("err: %#v", rc.Value())
}
vars := map[string]ast.Variable{
"var.bar": ast.Variable{
Value: "baz",
Type: ast.TypeString,
},
}
if err := rc.Interpolate(vars); err != nil {
t.Fatalf("err: %s", err)
}
if rc.Value() != "baz" {
t.Fatalf("bad: %#v", rc.Value())
}
}
func TestRawConfig_implGob(t *testing.T) {
var _ gob.GobDecoder = new(RawConfig)
var _ gob.GobEncoder = new(RawConfig)
}
// verify that RawMap returns an identical copy
func TestNewRawConfig_rawMap(t *testing.T) {
raw := map[string]interface{}{
"foo": "${var.bar}",
"bar": `${file("boom.txt")}`,
}
rc, err := NewRawConfig(raw)
if err != nil {
t.Fatalf("err: %s", err)
}
rawCopy := rc.RawMap()
if !reflect.DeepEqual(raw, rawCopy) {
t.Fatalf("bad: %#v", rawCopy)
}
// make sure they aren't the same map
raw["test"] = "value"
if reflect.DeepEqual(raw, rawCopy) {
t.Fatal("RawMap() didn't return a copy")
}
}
......@@ -22,7 +22,6 @@ require (
github.com/aws/aws-sdk-go v1.31.9
github.com/baiyubin/aliyun-sts-go-sdk v0.0.0-20180326062324-cfa1a18b161f // indirect
github.com/bgentry/speakeasy v0.1.0
github.com/blang/semver v3.5.1+incompatible
github.com/bmatcuk/doublestar v1.1.5
github.com/boltdb/bolt v1.3.1 // indirect
github.com/chzyer/logex v1.1.10 // indirect
......@@ -71,7 +70,6 @@ require (
github.com/hashicorp/go-version v1.2.0
github.com/hashicorp/hcl v0.0.0-20170504190234-a4b07c25de5f
github.com/hashicorp/hcl/v2 v2.6.0
github.com/hashicorp/hil v0.0.0-20190212112733-ab17b08d6590
github.com/hashicorp/memberlist v0.1.0 // indirect
github.com/hashicorp/serf v0.0.0-20160124182025-e4ec8cc423bb // indirect
github.com/hashicorp/terraform-config-inspect v0.0.0-20191212124732-c6ae6269b9d7
......@@ -101,7 +99,6 @@ require (
github.com/mitchellh/go-linereader v0.0.0-20190213213312-1b945b3263eb
github.com/mitchellh/go-wordwrap v1.0.0
github.com/mitchellh/gox v1.0.1
github.com/mitchellh/hashstructure v1.0.0
github.com/mitchellh/mapstructure v1.1.2
github.com/mitchellh/panicwrap v1.0.0
github.com/mitchellh/prefixedio v0.0.0-20190213213902-5733675afd51
......
......@@ -94,8 +94,6 @@ github.com/bgentry/go-netrc v0.0.0-20140422174119-9fd32a8b3d3d h1:xDfNPAt8lFiC1U
github.com/bgentry/go-netrc v0.0.0-20140422174119-9fd32a8b3d3d/go.mod h1:6QX/PXZ00z/TKoufEY6K/a0k6AhaJrQKdFe6OfVXsa4=
github.com/bgentry/speakeasy v0.1.0 h1:ByYyxL9InA1OWqxJqqp2A5pYHUrCiAL6K3J+LKSsQkY=
github.com/bgentry/speakeasy v0.1.0/go.mod h1:+zsyZBPWlz7T6j88CTgSN5bM796AkVf0kBD4zp0CCIs=
github.com/blang/semver v3.5.1+incompatible h1:cQNTCjp13qL8KC3Nbxr/y2Bqb63oX6wdnnjpJbkM4JQ=
github.com/blang/semver v3.5.1+incompatible/go.mod h1:kRBLl5iJ+tD4TcOOxsy/0fnwebNt5EWlYSAyrTnjyyk=
github.com/bmatcuk/doublestar v1.1.5 h1:2bNwBOmhyFEFcoB3tGvTD5xanq+4kyOZlB8wFYbMjkk=
github.com/bmatcuk/doublestar v1.1.5/go.mod h1:wiQtGV+rzVYxB7WIlirSN++5HPtPlXEo9MEoZQC/PmE=
github.com/boltdb/bolt v1.3.1 h1:JQmyP4ZBrce+ZQu0dY660FMfatumYDLun9hBCUVIkF4=
......@@ -279,8 +277,6 @@ github.com/hashicorp/hcl v0.0.0-20170504190234-a4b07c25de5f/go.mod h1:oZtUIOe8dh
github.com/hashicorp/hcl/v2 v2.0.0/go.mod h1:oVVDG71tEinNGYCxinCYadcmKU9bglqW9pV3txagJ90=
github.com/hashicorp/hcl/v2 v2.6.0 h1:3krZOfGY6SziUXa6H9PJU6TyohHn7I+ARYnhbeNBz+o=
github.com/hashicorp/hcl/v2 v2.6.0/go.mod h1:bQTN5mpo+jewjJgh8jr0JUguIi7qPHUF6yIfAEN3jqY=
github.com/hashicorp/hil v0.0.0-20190212112733-ab17b08d6590 h1:2yzhWGdgQUWZUCNK+AoO35V+HTsgEmcM4J9IkArh7PI=
github.com/hashicorp/hil v0.0.0-20190212112733-ab17b08d6590/go.mod h1:n2TSygSNwsLJ76m8qFXTSc7beTb+auJxYdqrnoqwZWE=
github.com/hashicorp/memberlist v0.1.0 h1:qSsCiC0WYD39lbSitKNt40e30uorm2Ss/d4JGU1hzH8=
github.com/hashicorp/memberlist v0.1.0/go.mod h1:ncdBp14cuox2iFOq3kDiquKU6fqsTBc3W6JvZwjxxsE=
github.com/hashicorp/serf v0.0.0-20160124182025-e4ec8cc423bb h1:ZbgmOQt8DOg796figP87/EFCVx2v2h9yRvwHF/zceX4=
......@@ -385,8 +381,6 @@ github.com/mitchellh/go-wordwrap v1.0.0 h1:6GlHJ/LTGMrIJbwgdqdl2eEH8o+Exx/0m8ir9
github.com/mitchellh/go-wordwrap v1.0.0/go.mod h1:ZXFpozHsX6DPmq2I0TCekCxypsnAUbP2oI0UX1GXzOo=
github.com/mitchellh/gox v1.0.1 h1:x0jD3dcHk9a9xPSDN6YEL4xL6Qz0dvNYm8yZqui5chI=
github.com/mitchellh/gox v1.0.1/go.mod h1:ED6BioOGXMswlXa2zxfh/xdd5QhwYliBFn9V18Ap4z4=
github.com/mitchellh/hashstructure v1.0.0 h1:ZkRJX1CyOoTkar7p/mLS5TZU4nJ1Rn/F8u9dGS02Q3Y=
github.com/mitchellh/hashstructure v1.0.0/go.mod h1:QjSHrPWS+BGUVBYkbTZWEnOh3G1DutKwClXU/ABz6AQ=
github.com/mitchellh/iochan v1.0.0 h1:C+X3KsSTLFVBr/tK1eYN/vs4rJcvsiLU338UhYPJWeY=
github.com/mitchellh/iochan v1.0.0/go.mod h1:JwYml1nuB7xOzsp52dPpHFffvOCDupsG0QubkSMEySY=
github.com/mitchellh/mapstructure v1.1.2 h1:fmNYVwqnSfB9mZU6OS2O6GsXM+wcskZDuKQzvN1EDeE=
......
......@@ -11,8 +11,6 @@ import (
"strings"
"testing"
"github.com/hashicorp/hil"
"github.com/hashicorp/hil/ast"
"github.com/hashicorp/terraform/configs/hcl2shim"
"github.com/hashicorp/terraform/helper/hashcode"
"github.com/hashicorp/terraform/terraform"
......@@ -127,11 +125,6 @@ func TestValueType_Zero(t *testing.T) {
}
}
func interfaceToVariableSwallowError(input interface{}) ast.Variable {
variable, _ := hil.InterfaceToVariable(input)
return variable
}
func TestSchemaMap_Diff(t *testing.T) {
cases := []struct {
Name string
......
......@@ -12,7 +12,6 @@ import (
"github.com/zclconf/go-cty/cty"
"github.com/hashicorp/terraform/addrs"
"github.com/hashicorp/terraform/configs"
"github.com/hashicorp/terraform/configs/configschema"
"github.com/hashicorp/terraform/configs/hcl2shim"
)
......@@ -185,15 +184,6 @@ type ResourceConfig struct {
ComputedKeys []string
Raw map[string]interface{}
Config map[string]interface{}
raw *configs.RawConfig
}
// NewResourceConfig creates a new ResourceConfig from a configs.RawConfig.
func NewResourceConfig(c *configs.RawConfig) *ResourceConfig {
result := &ResourceConfig{raw: c}
result.interpolateForce()
return result
}
// NewResourceConfigRaw constructs a ResourceConfig whose content is exactly
......@@ -512,31 +502,6 @@ func (c *ResourceConfig) get(
return current, true
}
// interpolateForce is a temporary thing. We want to get rid of interpolate
// above and likewise this, but it can only be done after the f-ast-graph
// refactor is complete.
func (c *ResourceConfig) interpolateForce() {
if c.raw == nil {
// If we don't have a lowercase "raw" but we _do_ have the uppercase
// Raw populated then this indicates that we're recieving a shim
// ResourceConfig created by NewResourceConfigShimmed, which is already
// fully evaluated and thus this function doesn't need to do anything.
if c.Raw != nil {
return
}
var err error
c.raw, err = configs.NewRawConfig(make(map[string]interface{}))
if err != nil {
panic(err)
}
}
c.ComputedKeys = c.raw.UnknownKeys()
c.Raw = c.raw.RawMap()
c.Config = c.raw.Config()
}
// unknownCheckWalker
type unknownCheckWalker struct {
Unknown bool
......
language: go
matrix:
include:
- go: 1.4.3
- go: 1.5.4
- go: 1.6.3
- go: 1.7
- go: tip
allow_failures:
- go: tip
install:
- go get golang.org/x/tools/cmd/cover
- go get github.com/mattn/goveralls
script:
- echo "Test and track coverage" ; $HOME/gopath/bin/goveralls -package "." -service=travis-ci
-repotoken $COVERALLS_TOKEN
- echo "Build examples" ; cd examples && go build
- echo "Check if gofmt'd" ; diff -u <(echo -n) <(gofmt -d -s .)
env:
global:
secure: HroGEAUQpVq9zX1b1VIkraLiywhGbzvNnTZq2TMxgK7JHP8xqNplAeF1izrR2i4QLL9nsY+9WtYss4QuPvEtZcVHUobw6XnL6radF7jS1LgfYZ9Y7oF+zogZ2I5QUMRLGA7rcxQ05s7mKq3XZQfeqaNts4bms/eZRefWuaFZbkw=
The MIT License
Copyright (c) 2014 Benedikt Lang <github at benediktlang.de>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
semver for golang [![Build Status](https://travis-ci.org/blang/semver.svg?branch=master)](https://travis-ci.org/blang/semver) [![GoDoc](https://godoc.org/github.com/blang/semver?status.png)](https://godoc.org/github.com/blang/semver) [![Coverage Status](https://img.shields.io/coveralls/blang/semver.svg)](https://coveralls.io/r/blang/semver?branch=master)
======
semver is a [Semantic Versioning](http://semver.org/) library written in golang. It fully covers spec version `2.0.0`.
Usage
-----
```bash
$ go get github.com/blang/semver
```
Note: Always vendor your dependencies or fix on a specific version tag.
```go
import github.com/blang/semver
v1, err := semver.Make("1.0.0-beta")
v2, err := semver.Make("2.0.0-beta")
v1.Compare(v2)
```
Also check the [GoDocs](http://godoc.org/github.com/blang/semver).
Why should I use this lib?
-----
- Fully spec compatible
- No reflection
- No regex
- Fully tested (Coverage >99%)
- Readable parsing/validation errors
- Fast (See [Benchmarks](#benchmarks))
- Only Stdlib
- Uses values instead of pointers
- Many features, see below
Features
-----
- Parsing and validation at all levels
- Comparator-like comparisons
- Compare Helper Methods
- InPlace manipulation
- Ranges `>=1.0.0 <2.0.0 || >=3.0.0 !3.0.1-beta.1`
- Wildcards `>=1.x`, `<=2.5.x`
- Sortable (implements sort.Interface)
- database/sql compatible (sql.Scanner/Valuer)
- encoding/json compatible (json.Marshaler/Unmarshaler)
Ranges
------
A `Range` is a set of conditions which specify which versions satisfy the range.
A condition is composed of an operator and a version. The supported operators are:
- `<1.0.0` Less than `1.0.0`
- `<=1.0.0` Less than or equal to `1.0.0`
- `>1.0.0` Greater than `1.0.0`
- `>=1.0.0` Greater than or equal to `1.0.0`
- `1.0.0`, `=1.0.0`, `==1.0.0` Equal to `1.0.0`
- `!1.0.0`, `!=1.0.0` Not equal to `1.0.0`. Excludes version `1.0.0`.
Note that spaces between the operator and the version will be gracefully tolerated.
A `Range` can link multiple `Ranges` separated by space:
Ranges can be linked by logical AND:
- `>1.0.0 <2.0.0` would match between both ranges, so `1.1.1` and `1.8.7` but not `1.0.0` or `2.0.0`
- `>1.0.0 <3.0.0 !2.0.3-beta.2` would match every version between `1.0.0` and `3.0.0` except `2.0.3-beta.2`
Ranges can also be linked by logical OR:
- `<2.0.0 || >=3.0.0` would match `1.x.x` and `3.x.x` but not `2.x.x`
AND has a higher precedence than OR. It's not possible to use brackets.
Ranges can be combined by both AND and OR
- `>1.0.0 <2.0.0 || >3.0.0 !4.2.1` would match `1.2.3`, `1.9.9`, `3.1.1`, but not `4.2.1`, `2.1.1`
Range usage:
```
v, err := semver.Parse("1.2.3")
range, err := semver.ParseRange(">1.0.0 <2.0.0 || >=3.0.0")
if range(v) {
//valid
}
```
Example
-----
Have a look at full examples in [examples/main.go](examples/main.go)
```go
import github.com/blang/semver
v, err := semver.Make("0.0.1-alpha.preview+123.github")
fmt.Printf("Major: %d\n", v.Major)
fmt.Printf("Minor: %d\n", v.Minor)
fmt.Printf("Patch: %d\n", v.Patch)
fmt.Printf("Pre: %s\n", v.Pre)
fmt.Printf("Build: %s\n", v.Build)
// Prerelease versions array
if len(v.Pre) > 0 {
fmt.Println("Prerelease versions:")
for i, pre := range v.Pre {
fmt.Printf("%d: %q\n", i, pre)
}
}
// Build meta data array
if len(v.Build) > 0 {
fmt.Println("Build meta data:")
for i, build := range v.Build {
fmt.Printf("%d: %q\n", i, build)
}
}
v001, err := semver.Make("0.0.1")
// Compare using helpers: v.GT(v2), v.LT, v.GTE, v.LTE
v001.GT(v) == true
v.LT(v001) == true
v.GTE(v) == true
v.LTE(v) == true
// Or use v.Compare(v2) for comparisons (-1, 0, 1):
v001.Compare(v) == 1
v.Compare(v001) == -1
v.Compare(v) == 0
// Manipulate Version in place:
v.Pre[0], err = semver.NewPRVersion("beta")
if err != nil {
fmt.Printf("Error parsing pre release version: %q", err)
}
fmt.Println("\nValidate versions:")
v.Build[0] = "?"
err = v.Validate()
if err != nil {
fmt.Printf("Validation failed: %s\n", err)
}
```
Benchmarks
-----
BenchmarkParseSimple-4 5000000 390 ns/op 48 B/op 1 allocs/op
BenchmarkParseComplex-4 1000000 1813 ns/op 256 B/op 7 allocs/op
BenchmarkParseAverage-4 1000000 1171 ns/op 163 B/op 4 allocs/op
BenchmarkStringSimple-4 20000000 119 ns/op 16 B/op 1 allocs/op
BenchmarkStringLarger-4 10000000 206 ns/op 32 B/op 2 allocs/op
BenchmarkStringComplex-4 5000000 324 ns/op 80 B/op 3 allocs/op
BenchmarkStringAverage-4 5000000 273 ns/op 53 B/op 2 allocs/op
BenchmarkValidateSimple-4 200000000 9.33 ns/op 0 B/op 0 allocs/op
BenchmarkValidateComplex-4 3000000 469 ns/op 0 B/op 0 allocs/op
BenchmarkValidateAverage-4 5000000 256 ns/op 0 B/op 0 allocs/op
BenchmarkCompareSimple-4 100000000 11.8 ns/op 0 B/op 0 allocs/op
BenchmarkCompareComplex-4 50000000 30.8 ns/op 0 B/op 0 allocs/op
BenchmarkCompareAverage-4 30000000 41.5 ns/op 0 B/op 0 allocs/op
BenchmarkSort-4 3000000 419 ns/op 256 B/op 2 allocs/op
BenchmarkRangeParseSimple-4 2000000 850 ns/op 192 B/op 5 allocs/op
BenchmarkRangeParseAverage-4 1000000 1677 ns/op 400 B/op 10 allocs/op
BenchmarkRangeParseComplex-4 300000 5214 ns/op 1440 B/op 30 allocs/op
BenchmarkRangeMatchSimple-4 50000000 25.6 ns/op 0 B/op 0 allocs/op
BenchmarkRangeMatchAverage-4 30000000 56.4 ns/op 0 B/op 0 allocs/op
BenchmarkRangeMatchComplex-4 10000000 153 ns/op 0 B/op 0 allocs/op
See benchmark cases at [semver_test.go](semver_test.go)
Motivation
-----
I simply couldn't find any lib supporting the full spec. Others were just wrong or used reflection and regex which i don't like.
Contribution
-----
Feel free to make a pull request. For bigger changes create a issue first to discuss about it.
License
-----
See [LICENSE](LICENSE) file.
package semver
import (
"encoding/json"
)
// MarshalJSON implements the encoding/json.Marshaler interface.
func (v Version) MarshalJSON() ([]byte, error) {
return json.Marshal(v.String())
}
// UnmarshalJSON implements the encoding/json.Unmarshaler interface.
func (v *Version) UnmarshalJSON(data []byte) (err error) {
var versionString string
if err = json.Unmarshal(data, &versionString); err != nil {
return
}
*v, err = Parse(versionString)
return
}
{
"author": "blang",
"bugs": {
"URL": "https://github.com/blang/semver/issues",
"url": "https://github.com/blang/semver/issues"
},
"gx": {
"dvcsimport": "github.com/blang/semver"
},
"gxVersion": "0.10.0",
"language": "go",
"license": "MIT",
"name": "semver",
"releaseCmd": "git commit -a -m \"gx publish $VERSION\"",
"version": "3.5.1"
}
package semver
import (
"fmt"
"strconv"
"strings"
"unicode"
)
type wildcardType int
const (
noneWildcard wildcardType = iota
majorWildcard wildcardType = 1
minorWildcard wildcardType = 2
patchWildcard wildcardType = 3
)
func wildcardTypefromInt(i int) wildcardType {
switch i {
case 1:
return majorWildcard
case 2:
return minorWildcard
case 3:
return patchWildcard
default:
return noneWildcard
}
}
type comparator func(Version, Version) bool
var (
compEQ comparator = func(v1 Version, v2 Version) bool {
return v1.Compare(v2) == 0
}
compNE = func(v1 Version, v2 Version) bool {
return v1.Compare(v2) != 0
}
compGT = func(v1 Version, v2 Version) bool {
return v1.Compare(v2) == 1
}
compGE = func(v1 Version, v2 Version) bool {
return v1.Compare(v2) >= 0
}
compLT = func(v1 Version, v2 Version) bool {
return v1.Compare(v2) == -1
}
compLE = func(v1 Version, v2 Version) bool {
return v1.Compare(v2) <= 0
}
)
type versionRange struct {
v Version
c comparator
}
// rangeFunc creates a Range from the given versionRange.
func (vr *versionRange) rangeFunc() Range {
return Range(func(v Version) bool {
return vr.c(v, vr.v)
})
}
// Range represents a range of versions.
// A Range can be used to check if a Version satisfies it:
//
// range, err := semver.ParseRange(">1.0.0 <2.0.0")
// range(semver.MustParse("1.1.1") // returns true
type Range func(Version) bool
// OR combines the existing Range with another Range using logical OR.
func (rf Range) OR(f Range) Range {
return Range(func(v Version) bool {
return rf(v) || f(v)
})
}
// AND combines the existing Range with another Range using logical AND.
func (rf Range) AND(f Range) Range {
return Range(func(v Version) bool {
return rf(v) && f(v)
})
}
// ParseRange parses a range and returns a Range.
// If the range could not be parsed an error is returned.
//
// Valid ranges are:
// - "<1.0.0"
// - "<=1.0.0"
// - ">1.0.0"
// - ">=1.0.0"
// - "1.0.0", "=1.0.0", "==1.0.0"
// - "!1.0.0", "!=1.0.0"
//
// A Range can consist of multiple ranges separated by space:
// Ranges can be linked by logical AND:
// - ">1.0.0 <2.0.0" would match between both ranges, so "1.1.1" and "1.8.7" but not "1.0.0" or "2.0.0"
// - ">1.0.0 <3.0.0 !2.0.3-beta.2" would match every version between 1.0.0 and 3.0.0 except 2.0.3-beta.2
//
// Ranges can also be linked by logical OR:
// - "<2.0.0 || >=3.0.0" would match "1.x.x" and "3.x.x" but not "2.x.x"
//
// AND has a higher precedence than OR. It's not possible to use brackets.
//
// Ranges can be combined by both AND and OR
//
// - `>1.0.0 <2.0.0 || >3.0.0 !4.2.1` would match `1.2.3`, `1.9.9`, `3.1.1`, but not `4.2.1`, `2.1.1`
func ParseRange(s string) (Range, error) {
parts := splitAndTrim(s)
orParts, err := splitORParts(parts)
if err != nil {
return nil, err
}
expandedParts, err := expandWildcardVersion(orParts)
if err != nil {
return nil, err
}
var orFn Range
for _, p := range expandedParts {
var andFn Range
for _, ap := range p {
opStr, vStr, err := splitComparatorVersion(ap)
if err != nil {
return nil, err
}
vr, err := buildVersionRange(opStr, vStr)
if err != nil {
return nil, fmt.Errorf("Could not parse Range %q: %s", ap, err)
}
rf := vr.rangeFunc()
// Set function
if andFn == nil {
andFn = rf
} else { // Combine with existing function
andFn = andFn.AND(rf)
}
}
if orFn == nil {
orFn = andFn
} else {
orFn = orFn.OR(andFn)
}
}
return orFn, nil
}
// splitORParts splits the already cleaned parts by '||'.
// Checks for invalid positions of the operator and returns an
// error if found.
func splitORParts(parts []string) ([][]string, error) {
var ORparts [][]string
last := 0
for i, p := range parts {
if p == "||" {
if i == 0 {
return nil, fmt.Errorf("First element in range is '||'")
}
ORparts = append(ORparts, parts[last:i])
last = i + 1
}
}
if last == len(parts) {
return nil, fmt.Errorf("Last element in range is '||'")
}
ORparts = append(ORparts, parts[last:])
return ORparts, nil
}
// buildVersionRange takes a slice of 2: operator and version
// and builds a versionRange, otherwise an error.
func buildVersionRange(opStr, vStr string) (*versionRange, error) {
c := parseComparator(opStr)
if c == nil {
return nil, fmt.Errorf("Could not parse comparator %q in %q", opStr, strings.Join([]string{opStr, vStr}, ""))
}
v, err := Parse(vStr)
if err != nil {
return nil, fmt.Errorf("Could not parse version %q in %q: %s", vStr, strings.Join([]string{opStr, vStr}, ""), err)
}
return &versionRange{
v: v,
c: c,
}, nil
}
// inArray checks if a byte is contained in an array of bytes
func inArray(s byte, list []byte) bool {
for _, el := range list {
if el == s {
return true
}
}
return false
}
// splitAndTrim splits a range string by spaces and cleans whitespaces
func splitAndTrim(s string) (result []string) {
last := 0
var lastChar byte
excludeFromSplit := []byte{'>', '<', '='}
for i := 0; i < len(s); i++ {
if s[i] == ' ' && !inArray(lastChar, excludeFromSplit) {
if last < i-1 {
result = append(result, s[last:i])
}
last = i + 1
} else if s[i] != ' ' {
lastChar = s[i]
}
}
if last < len(s)-1 {
result = append(result, s[last:])
}
for i, v := range result {
result[i] = strings.Replace(v, " ", "", -1)
}
// parts := strings.Split(s, " ")
// for _, x := range parts {
// if s := strings.TrimSpace(x); len(s) != 0 {
// result = append(result, s)
// }
// }
return
}
// splitComparatorVersion splits the comparator from the version.
// Input must be free of leading or trailing spaces.
func splitComparatorVersion(s string) (string, string, error) {
i := strings.IndexFunc(s, unicode.IsDigit)
if i == -1 {
return "", "", fmt.Errorf("Could not get version from string: %q", s)
}
return strings.TrimSpace(s[0:i]), s[i:], nil
}
// getWildcardType will return the type of wildcard that the
// passed version contains
func getWildcardType(vStr string) wildcardType {
parts := strings.Split(vStr, ".")
nparts := len(parts)
wildcard := parts[nparts-1]
possibleWildcardType := wildcardTypefromInt(nparts)
if wildcard == "x" {
return possibleWildcardType
}
return noneWildcard
}
// createVersionFromWildcard will convert a wildcard version
// into a regular version, replacing 'x's with '0's, handling
// special cases like '1.x.x' and '1.x'
func createVersionFromWildcard(vStr string) string {
// handle 1.x.x
vStr2 := strings.Replace(vStr, ".x.x", ".x", 1)
vStr2 = strings.Replace(vStr2, ".x", ".0", 1)
parts := strings.Split(vStr2, ".")
// handle 1.x
if len(parts) == 2 {
return vStr2 + ".0"
}
return vStr2
}
// incrementMajorVersion will increment the major version
// of the passed version
func incrementMajorVersion(vStr string) (string, error) {
parts := strings.Split(vStr, ".")
i, err := strconv.Atoi(parts[0])
if err != nil {
return "", err
}
parts[0] = strconv.Itoa(i + 1)
return strings.Join(parts, "."), nil
}
// incrementMajorVersion will increment the minor version
// of the passed version
func incrementMinorVersion(vStr string) (string, error) {
parts := strings.Split(vStr, ".")
i, err := strconv.Atoi(parts[1])
if err != nil {
return "", err
}
parts[1] = strconv.Itoa(i + 1)
return strings.Join(parts, "."), nil
}
// expandWildcardVersion will expand wildcards inside versions
// following these rules:
//
// * when dealing with patch wildcards:
// >= 1.2.x will become >= 1.2.0
// <= 1.2.x will become < 1.3.0
// > 1.2.x will become >= 1.3.0
// < 1.2.x will become < 1.2.0
// != 1.2.x will become < 1.2.0 >= 1.3.0
//
// * when dealing with minor wildcards:
// >= 1.x will become >= 1.0.0
// <= 1.x will become < 2.0.0
// > 1.x will become >= 2.0.0
// < 1.0 will become < 1.0.0
// != 1.x will become < 1.0.0 >= 2.0.0
//
// * when dealing with wildcards without
// version operator:
// 1.2.x will become >= 1.2.0 < 1.3.0
// 1.x will become >= 1.0.0 < 2.0.0
func expandWildcardVersion(parts [][]string) ([][]string, error) {
var expandedParts [][]string
for _, p := range parts {
var newParts []string
for _, ap := range p {
if strings.Index(ap, "x") != -1 {
opStr, vStr, err := splitComparatorVersion(ap)
if err != nil {
return nil, err
}
versionWildcardType := getWildcardType(vStr)
flatVersion := createVersionFromWildcard(vStr)
var resultOperator string
var shouldIncrementVersion bool
switch opStr {
case ">":
resultOperator = ">="
shouldIncrementVersion = true
case ">=":
resultOperator = ">="
case "<":
resultOperator = "<"
case "<=":
resultOperator = "<"
shouldIncrementVersion = true
case "", "=", "==":
newParts = append(newParts, ">="+flatVersion)
resultOperator = "<"
shouldIncrementVersion = true
case "!=", "!":
newParts = append(newParts, "<"+flatVersion)
resultOperator = ">="
shouldIncrementVersion = true
}
var resultVersion string
if shouldIncrementVersion {
switch versionWildcardType {
case patchWildcard:
resultVersion, _ = incrementMinorVersion(flatVersion)
case minorWildcard:
resultVersion, _ = incrementMajorVersion(flatVersion)
}
} else {
resultVersion = flatVersion
}
ap = resultOperator + resultVersion
}
newParts = append(newParts, ap)
}
expandedParts = append(expandedParts, newParts)
}
return expandedParts, nil
}
func parseComparator(s string) comparator {
switch s {
case "==":
fallthrough
case "":
fallthrough
case "=":
return compEQ
case ">":
return compGT
case ">=":
return compGE
case "<":
return compLT
case "<=":
return compLE
case "!":
fallthrough
case "!=":
return compNE
}
return nil
}
// MustParseRange is like ParseRange but panics if the range cannot be parsed.
func MustParseRange(s string) Range {
r, err := ParseRange(s)
if err != nil {
panic(`semver: ParseRange(` + s + `): ` + err.Error())
}
return r
}
package semver
import (
"errors"
"fmt"
"strconv"
"strings"
)
const (
numbers string = "0123456789"
alphas = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ-"
alphanum = alphas + numbers
)
// SpecVersion is the latest fully supported spec version of semver
var SpecVersion = Version{
Major: 2,
Minor: 0,
Patch: 0,
}
// Version represents a semver compatible version
type Version struct {
Major uint64
Minor uint64
Patch uint64
Pre []PRVersion
Build []string //No Precendence
}
// Version to string
func (v Version) String() string {
b := make([]byte, 0, 5)
b = strconv.AppendUint(b, v.Major, 10)
b = append(b, '.')
b = strconv.AppendUint(b, v.Minor, 10)
b = append(b, '.')
b = strconv.AppendUint(b, v.Patch, 10)
if len(v.Pre) > 0 {
b = append(b, '-')
b = append(b, v.Pre[0].String()...)
for _, pre := range v.Pre[1:] {
b = append(b, '.')
b = append(b, pre.String()...)
}
}
if len(v.Build) > 0 {
b = append(b, '+')
b = append(b, v.Build[0]...)
for _, build := range v.Build[1:] {
b = append(b, '.')
b = append(b, build...)
}
}
return string(b)
}
// Equals checks if v is equal to o.
func (v Version) Equals(o Version) bool {
return (v.Compare(o) == 0)
}
// EQ checks if v is equal to o.
func (v Version) EQ(o Version) bool {
return (v.Compare(o) == 0)
}
// NE checks if v is not equal to o.
func (v Version) NE(o Version) bool {
return (v.Compare(o) != 0)
}
// GT checks if v is greater than o.
func (v Version) GT(o Version) bool {
return (v.Compare(o) == 1)
}
// GTE checks if v is greater than or equal to o.
func (v Version) GTE(o Version) bool {
return (v.Compare(o) >= 0)
}
// GE checks if v is greater than or equal to o.
func (v Version) GE(o Version) bool {
return (v.Compare(o) >= 0)
}
// LT checks if v is less than o.
func (v Version) LT(o Version) bool {
return (v.Compare(o) == -1)
}
// LTE checks if v is less than or equal to o.
func (v Version) LTE(o Version) bool {
return (v.Compare(o) <= 0)
}
// LE checks if v is less than or equal to o.
func (v Version) LE(o Version) bool {
return (v.Compare(o) <= 0)
}
// Compare compares Versions v to o:
// -1 == v is less than o
// 0 == v is equal to o
// 1 == v is greater than o
func (v Version) Compare(o Version) int {
if v.Major != o.Major {
if v.Major > o.Major {
return 1
}
return -1
}
if v.Minor != o.Minor {
if v.Minor > o.Minor {
return 1
}
return -1
}
if v.Patch != o.Patch {
if v.Patch > o.Patch {
return 1
}
return -1
}
// Quick comparison if a version has no prerelease versions
if len(v.Pre) == 0 && len(o.Pre) == 0 {
return 0
} else if len(v.Pre) == 0 && len(o.Pre) > 0 {
return 1
} else if len(v.Pre) > 0 && len(o.Pre) == 0 {
return -1
}
i := 0
for ; i < len(v.Pre) && i < len(o.Pre); i++ {
if comp := v.Pre[i].Compare(o.Pre[i]); comp == 0 {
continue
} else if comp == 1 {
return 1
} else {
return -1
}
}
// If all pr versions are the equal but one has further prversion, this one greater
if i == len(v.Pre) && i == len(o.Pre) {
return 0
} else if i == len(v.Pre) && i < len(o.Pre) {
return -1
} else {
return 1
}
}
// Validate validates v and returns error in case
func (v Version) Validate() error {
// Major, Minor, Patch already validated using uint64
for _, pre := range v.Pre {
if !pre.IsNum { //Numeric prerelease versions already uint64
if len(pre.VersionStr) == 0 {
return fmt.Errorf("Prerelease can not be empty %q", pre.VersionStr)
}
if !containsOnly(pre.VersionStr, alphanum) {
return fmt.Errorf("Invalid character(s) found in prerelease %q", pre.VersionStr)
}
}
}
for _, build := range v.Build {
if len(build) == 0 {
return fmt.Errorf("Build meta data can not be empty %q", build)
}
if !containsOnly(build, alphanum) {
return fmt.Errorf("Invalid character(s) found in build meta data %q", build)
}
}
return nil
}
// New is an alias for Parse and returns a pointer, parses version string and returns a validated Version or error
func New(s string) (vp *Version, err error) {
v, err := Parse(s)
vp = &v
return
}
// Make is an alias for Parse, parses version string and returns a validated Version or error
func Make(s string) (Version, error) {
return Parse(s)
}
// ParseTolerant allows for certain version specifications that do not strictly adhere to semver
// specs to be parsed by this library. It does so by normalizing versions before passing them to
// Parse(). It currently trims spaces, removes a "v" prefix, and adds a 0 patch number to versions
// with only major and minor components specified
func ParseTolerant(s string) (Version, error) {
s = strings.TrimSpace(s)
s = strings.TrimPrefix(s, "v")
// Split into major.minor.(patch+pr+meta)
parts := strings.SplitN(s, ".", 3)
if len(parts) < 3 {
if strings.ContainsAny(parts[len(parts)-1], "+-") {
return Version{}, errors.New("Short version cannot contain PreRelease/Build meta data")
}
for len(parts) < 3 {
parts = append(parts, "0")
}
s = strings.Join(parts, ".")
}
return Parse(s)
}
// Parse parses version string and returns a validated Version or error
func Parse(s string) (Version, error) {
if len(s) == 0 {
return Version{}, errors.New("Version string empty")
}
// Split into major.minor.(patch+pr+meta)
parts := strings.SplitN(s, ".", 3)
if len(parts) != 3 {
return Version{}, errors.New("No Major.Minor.Patch elements found")
}
// Major
if !containsOnly(parts[0], numbers) {
return Version{}, fmt.Errorf("Invalid character(s) found in major number %q", parts[0])
}
if hasLeadingZeroes(parts[0]) {
return Version{}, fmt.Errorf("Major number must not contain leading zeroes %q", parts[0])
}
major, err := strconv.ParseUint(parts[0], 10, 64)
if err != nil {
return Version{}, err
}
// Minor
if !containsOnly(parts[1], numbers) {
return Version{}, fmt.Errorf("Invalid character(s) found in minor number %q", parts[1])
}
if hasLeadingZeroes(parts[1]) {
return Version{}, fmt.Errorf("Minor number must not contain leading zeroes %q", parts[1])
}
minor, err := strconv.ParseUint(parts[1], 10, 64)
if err != nil {
return Version{}, err
}
v := Version{}
v.Major = major
v.Minor = minor
var build, prerelease []string
patchStr := parts[2]
if buildIndex := strings.IndexRune(patchStr, '+'); buildIndex != -1 {
build = strings.Split(patchStr[buildIndex+1:], ".")
patchStr = patchStr[:buildIndex]
}
if preIndex := strings.IndexRune(patchStr, '-'); preIndex != -1 {
prerelease = strings.Split(patchStr[preIndex+1:], ".")
patchStr = patchStr[:preIndex]
}
if !containsOnly(patchStr, numbers) {
return Version{}, fmt.Errorf("Invalid character(s) found in patch number %q", patchStr)
}
if hasLeadingZeroes(patchStr) {
return Version{}, fmt.Errorf("Patch number must not contain leading zeroes %q", patchStr)
}
patch, err := strconv.ParseUint(patchStr, 10, 64)
if err != nil {
return Version{}, err
}
v.Patch = patch
// Prerelease
for _, prstr := range prerelease {
parsedPR, err := NewPRVersion(prstr)
if err != nil {
return Version{}, err
}
v.Pre = append(v.Pre, parsedPR)
}
// Build meta data
for _, str := range build {
if len(str) == 0 {
return Version{}, errors.New("Build meta data is empty")
}
if !containsOnly(str, alphanum) {
return Version{}, fmt.Errorf("Invalid character(s) found in build meta data %q", str)
}
v.Build = append(v.Build, str)
}
return v, nil
}
// MustParse is like Parse but panics if the version cannot be parsed.
func MustParse(s string) Version {
v, err := Parse(s)
if err != nil {
panic(`semver: Parse(` + s + `): ` + err.Error())
}
return v
}
// PRVersion represents a PreRelease Version
type PRVersion struct {
VersionStr string
VersionNum uint64
IsNum bool
}
// NewPRVersion creates a new valid prerelease version
func NewPRVersion(s string) (PRVersion, error) {
if len(s) == 0 {
return PRVersion{}, errors.New("Prerelease is empty")
}
v := PRVersion{}
if containsOnly(s, numbers) {
if hasLeadingZeroes(s) {
return PRVersion{}, fmt.Errorf("Numeric PreRelease version must not contain leading zeroes %q", s)
}
num, err := strconv.ParseUint(s, 10, 64)
// Might never be hit, but just in case
if err != nil {
return PRVersion{}, err
}
v.VersionNum = num
v.IsNum = true
} else if containsOnly(s, alphanum) {
v.VersionStr = s
v.IsNum = false
} else {
return PRVersion{}, fmt.Errorf("Invalid character(s) found in prerelease %q", s)
}
return v, nil
}
// IsNumeric checks if prerelease-version is numeric
func (v PRVersion) IsNumeric() bool {
return v.IsNum
}
// Compare compares two PreRelease Versions v and o:
// -1 == v is less than o
// 0 == v is equal to o
// 1 == v is greater than o
func (v PRVersion) Compare(o PRVersion) int {
if v.IsNum && !o.IsNum {
return -1
} else if !v.IsNum && o.IsNum {
return 1
} else if v.IsNum && o.IsNum {
if v.VersionNum == o.VersionNum {
return 0
} else if v.VersionNum > o.VersionNum {
return 1
} else {
return -1
}
} else { // both are Alphas
if v.VersionStr == o.VersionStr {
return 0
} else if v.VersionStr > o.VersionStr {
return 1
} else {
return -1
}
}
}
// PreRelease version to string
func (v PRVersion) String() string {
if v.IsNum {
return strconv.FormatUint(v.VersionNum, 10)
}
return v.VersionStr
}
func containsOnly(s string, set string) bool {
return strings.IndexFunc(s, func(r rune) bool {
return !strings.ContainsRune(set, r)
}) == -1
}
func hasLeadingZeroes(s string) bool {
return len(s) > 1 && s[0] == '0'
}
// NewBuildVersion creates a new valid build version
func NewBuildVersion(s string) (string, error) {
if len(s) == 0 {
return "", errors.New("Buildversion is empty")
}
if !containsOnly(s, alphanum) {
return "", fmt.Errorf("Invalid character(s) found in build meta data %q", s)
}
return s, nil
}
package semver
import (
"sort"
)
// Versions represents multiple versions.
type Versions []Version
// Len returns length of version collection
func (s Versions) Len() int {
return len(s)
}
// Swap swaps two versions inside the collection by its indices
func (s Versions) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
// Less checks if version at index i is less than version at index j
func (s Versions) Less(i, j int) bool {
return s[i].LT(s[j])
}
// Sort sorts a slice of versions
func Sort(versions []Version) {
sort.Sort(Versions(versions))
}
package semver
import (
"database/sql/driver"
"fmt"
)
// Scan implements the database/sql.Scanner interface.
func (v *Version) Scan(src interface{}) (err error) {
var str string
switch src := src.(type) {
case string:
str = src
case []byte:
str = string(src)
default:
return fmt.Errorf("Version.Scan: cannot convert %T to string.", src)
}
if t, err := Parse(str); err == nil {
*v = t
}
return
}
// Value implements the database/sql/driver.Valuer interface.
func (v Version) Value() (driver.Value, error) {
return v.String(), nil
}
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment